A5 cells are silenced when REM sleep-like signs are elicited by pontine carbachol.

نویسندگان

  • Victor Fenik
  • Vitaliy Marchenko
  • Patrick Janssen
  • Richard O Davies
  • Leszek Kubin
چکیده

The A5 noradrenergic neurons are considered important for cardiorespiratory regulation. We hypothesized that A5 cells are silenced during rapid eye movement (REM) sleep, thereby contributing to cardiorespiratory changes and suppression of hypoglossal (XII) motoneuronal activity. We used an anesthetized, paralyzed, and artificially ventilated rat in which pontine microinjections of carbachol trigger signs of REM sleep, including hippocampal theta rhythm, motor suppression, and silencing of locus coeruleus neurons. All 16 putative noradrenergic A5 cells recorded were strongly suppressed when the REM sleep-like episodes were elicited and also after intravenous clonidine. Antidromic mapping showed that none of six neurons tested projected to the XII nucleus, whereas three of five projected to the nucleus of the solitary tract and two of four to the rostral ventrolateral medulla. Bilateral microinjections of clonidine into the A5 regions did not alter XII nerve activity. These data suggest that A5 neurons are silenced during natural REM sleep. This will lead to decreased norepinephrine release and may alter synaptic transmission in the nucleus of the solitary tract and rostral ventrolateral medulla without, however, a detectable impact on XII motoneurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of A5 Neurons Facilitates the Occurrence of REM Sleep-Like Episodes in Urethane-Anesthetized Rats: A New Role for Noradrenergic A5 Neurons?

When rapid eye movement (REM) sleep occurs, noradrenergic cells become silent, with the abolition of activity in locus coeruleus (LC) neurons seen as a key event permissive for the occurrence of REM sleep. However, it is not known whether silencing of other than LC noradrenergic neurons contributes to the generation of REM sleep. In urethane-anesthetized rats, stereotyped REM sleep-like episode...

متن کامل

Evidence That Adrenergic Ventrolateral Medullary Cells Are Activated whereas Precerebellar Lateral Reticular Nucleus Neurons Are Suppressed during REM Sleep

Rapid eye movement sleep (REMS) is generated in the brainstem by a distributed network of neurochemically distinct neurons. In the pons, the main subtypes are cholinergic and glutamatergic REMS-on cells and aminergic REMS-off cells. Pontine REMS-on cells send axons to the ventrolateral medulla (VLM), but little is known about REMS-related activity of VLM cells. In urethane-anesthetized rats, do...

متن کامل

THE RAPID EYE MOVEMENT (REM) STAGE OF SLEEP IS CHARACTERIZED BY CORTICAL AND HIPPOCAMPAL ACTIVATION, RAPID EYE MOVEMENTS, SILENCING OF brainstem aminergic neurons, and postural atonia.1 Cholinergic activation

THE RAPID EYE MOVEMENT (REM) STAGE OF SLEEP IS CHARACTERIZED BY CORTICAL AND HIPPOCAMPAL ACTIVATION, RAPID EYE MOVEMENTS, SILENCING OF brainstem aminergic neurons, and postural atonia.1 Cholinergic activation plays an important role in the generation of REM sleep, since pontine microinjections of cholinergic agonists into the pontine reticular formation trigger or enhance a rapid eye movements ...

متن کامل

Fos expression in pontomedullary catecholaminergic cells following rapid eye movement sleep-like episodes elicited by pontine carbachol in urethane-anesthetized rats.

Pontine noradrenergic neurons of the locus coeruleus (LC) and sub-coeruleus (SubC) region cease firing during rapid eye movement sleep (REMS). This plays a permissive role in the generation of REMS and may contribute to state-dependent modulation of transmission in the CNS. Whether all pontomedullary catecholaminergic neurons, including those in the A1/C1, A2/C2 and A7 groups, have REMS-related...

متن کامل

Disinhibition of perifornical hypothalamic neurones activates noradrenergic neurones and blocks pontine carbachol-induced REM sleep-like episodes in rats.

Studies in behaving animals suggest that neurones located in the perifornical (PF) region of the posterior hypothalamus promote wakefulness and suppress sleep. Among such cells are those that synthesize the excitatory peptides, orexins (ORX). Lack of ORX, or their receptors, is associated with narcolepsy/cataplexy, a disorder characterized by an increased pressure for rapid eye movement (REM) s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 93 4  شماره 

صفحات  -

تاریخ انتشار 2002